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1 Objectives

The space situational awareness (SSA) mission encompasses intelligence, surveillance of all space objects,
and the prediction of space events, threats, and activities. Specifically, the mission requires knowledge of
the object trajectory (orbit) and type (active satellite, decommissioned satellite, debris, etc.) for all objects in
the near-Earth environment. For objects that are currently under active control, one would also like to know
their current activities, capabilities, and expected future actions. These types of higher-level knowledge
must be supported by a significant amount of raw data collection. Space surveillance is that component of
SSA focused on the detection of space objects and the use of multisource data to track and identify space
objects. Currently, it can take weeks to establish correct orbits on objects of interest. Our approach to this
problem is to use a full multiple hypothesis tracking (MHT) correlation algorithm developed under previous
AFOSR grants, but modified to accommodate space surveillance. This new algorithm will be called multiple
hypothesis correlation (MHC).

While manual and rudimentary automated correlation schemes may suffice for known orbits or for a
small number of uncorrelated tracks (UCTs), an automated system will be required in the future to handle
an anticipated substantial increase in the number of space objects arising from space events and higher-
resolution sensors. Core challenges in the development of such an automated system include dense target
environments, the need to establish robust tracks in a timely fashion, limited data with large coverage gaps,
system biases and residual biases and their impact on orbit state propagation, and unresolved closely spaced
objects.

From a multiple target tracking perspective, our objectives in this program are to initiate orbit trajectories
on newly observed objects as quickly as possible; to improve our ability to maintain continuous tracks in
the presence of large coverage gaps; and to piece together UCTs from different sensors. To meet these
objectives, research is required in the following three algorithm components.

1. Uncertainty Modeling and Management. A prerequisite to a statistically rigorous and information
theory-based approach to tracking objects in space, sensor resource management, and conjunction
analysis is the consistent characterization of the uncertainty exhibited by a stochastic state. In space
surveillance, the challenges to achieving this objective are the nonlinear dynamics, long-term prop-
agations, and sparse data environment requiring the development of advanced methods such as the
adaptive Gaussian sum filter and the sliding window batch estimation filter. The status of the current
research towards this objective is detailed in Subsection 1.1.1.

2. Multiple Hypothesis Tracking. The data association or correlation problem is that of determining
which reports (tracks, tracklets, measurements, features) emanate from which object. For widely
spaced objects, reports are assigned to objects if they are within some gate (uncertainty region) of
the object. (The method is called nearest neighbor.) On the other hand, multisensor association
(correlation) in a dense target environment is a challenging problem and multiple hypothesis tracking
(MHT) techniques offer the best potential solution. For marginally detectable or dim targets, MHT
can be augmented by track-before-detect algorithms that output detections, but not formal tracks, or
possibly enhanced resolution techniques. Thus, what is needed is an MHT that can adapt to the
complexity of the problem thereby covering the range between widely spaced and closely spaced
objects as well as luminous and dim targets. Perhaps one of the most overlooked problems in the use
of multisource data and modern data fusion and correlation algorithms is that of sensor biases. A
major new necessity is joint bias estimation and correlation, which may be needed for overlapping
coverage, but is mandatory in handover situations, especially in large coverage gaps. Just as it is
essential to capture the uncertainty in state estimation via nonlinear filtering techniques, it is also
essential to capture the uncertainty in the association process. We call this association ambiguity
and we achieve this objective by producing the “probability of association.” Such an assessment is
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particularly important for processing UCTs and closely spaced objects. The status of the current
research towards this objective is detailed in Subsection 1.1.2.

3. Unresolved Closely Spaced Objects. Sensor resolution is a major obstacle in establishing orbits
on individual objects with limited data in a timely fashion; thus, it becomes necessary to enhance
the resolution of sensors and extract consistent sets of measurements from which individual orbits
on individual objects may be established. The status of the current research towards this objective is
detailed in Subsection 1.1.3.

While the above objectives remain a focus, Numerica continues the work on network-centric tracking
that was initially started with AFOSR funding and has now transitioned to a Phase II SBIR at AFRL/SNAT
and a Phase II SBIR with Department of the Army with a transition path to the SIAP Joint Program Office.

1.1 Status of Effort

The status of the current research program is summarized in this section. The individual objectives outlined
above are each addressed in the following subsections.

1.1.1 Uncertainty Modeling and Management

In this subsection, we review the general Bayesian framework for nonlinear filtering and describe the most
promising methods for achieving correct uncertainty consistency including the Gaussian sum filter and the
sliding window batch estimation filter.

1.1.1.1 Nonlinear Estimation and Filtering The problem of nonlinear filtering requires the definition
of dynamical and measurement models. It is assumed that the dynamic state x(t) ∈ Rn at time t evolves
according to the continuous-time stochastic model,

x′(t) = f(x(t), t) + G(x(t), t)w(t), (1)

where f : Rn × R → Rn, G : Rn × R → Rn×m, and w(t) is an m-dimensional Gaussian white noise
process having spectral density matrix Q(t) with E[w(t)w(τ)T ] = Q(t) δ(t − τ), t > τ . In particular,
in (1), the function f encodes the deterministic force components of the dynamics (e.g., gravity, drag, etc.)
while the process noise term models the stochastic acceleration. In many tracking applications, it is often
convenient to work with a discrete-time formulation of the dynamical model which assumes the form

xk+1 = fk(xk) + Gk(xk)wk, (2)

where xk = x(tk), fk : Rn → Rn, Gk : Rn → Rn×m, and {wk} is anm-dimensional zero-mean Gaussian
white noise sequence possessing a spectral density matrix Qk ∈ Rm×m such that E[wkw

T
j ] = Qk δkj . In

space surveillance, the process noise term is often very small and discarded. In such situations, the function
fk is just the solution flow corresponding to the continuous model (1) with w(t) = 0.

A sequence of measurements Zk ≡ {z1, . . . ,zk} is related to the corresponding kinematic states xk
via measurement functions hk : Rn → Rp according to the discrete-time measurement model

zk = hk(xk) + vk. (3)

In this equation, {vk} is a p-dimensional zero-mean Gaussian white-noise sequence with E[vk vTj ] =
Rk δkj . More general filter models can be formulated from measurement models with non-Gaussian or
correlated (e.g., colored) noise terms and sensor biases.
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Prediction Step:

p(xk|Zk−1) =
∫

p(xk|xk−1) p(xk−1|Zk−1) dxk−1

Correction Step:

p(xk|Zk) =
p(zk|xk) p(xk|Zk−1)

p(zk|Zk−1)
where
p(zk|Zk−1) =

∫
p(zk|xk) p(xk|Zk−1) dxk

p(xk|Zk−1)

p(xk|Zk)
Initialization:
p(x0|Z0) = p(x0)

1

Figure 1: The predictor-corrector step for the recursive Bayesian state estimator.

In the Bayesian approach to dynamic state estimation [1], one constructs the posterior probability den-
sity function (PDF) of the state based on information of a prior state and received measurements. Encap-
sulating all available statistical information, the posterior PDF p(xk|Zk) may be regarded as the complete
solution to the estimation problem and various optimal state estimates can be computed from it.

In a recursive filtering approach, measurement data is processed sequentially, rather than as a batch.
Given the initial density of the state p(x0) ≡ p(x0|Z0), the PDF p(xk|Zk) is obtained recursively in two
stages, namely prediction and correction, as illustrated in the flowchart of Figure 1. In the case of discrete-
time dynamics, the former is obtained from the transitional density p(xk|xk−1) in conjunction with the
Chapman-Kolmogorov equation defined in the prediction step box of Figure 1. In the case of continuous-
time dynamics, the time evolution of the predicted PDF p = p(x, t|Zk−1) for t > tk−1 is governed by the
Fokker-Planck-Kolmogorov equation (FPKE) [2]

∂p

∂t
= −∇Tx(pf) +

1
2

tr
[
∇x∇Tx(pGQGT )

]
, (4)

where ∇x is the gradient with respect to x viewed as a column operator. In the measurement update stage,
also called the correction or fusion step, the density p(zk|xk) is evaluated from the measurement model (3).
The term p(zk|Zk−1) in the denominator of the correction step is called the prediction error and appears in
the likelihood ratios for scoring an assignment of a report (i.e., zk) to a track (see, for example, Poore [3]).
Thus, its accurate evaluation is critical for correct data/track association (correlation).

Analytical solutions to the FPKE and to the prediction and correction equations in Figure 1 are generally
intractable and are only known in a few restrictive cases. In practice, models are nonlinear and states can
be non-Gaussian; one must be content with an approximate or suboptimal algorithm for the Bayesian state
estimator. While the extended Kalman filter (EKF) and unscented Kalman filter (UKF) are used extensively
in air and missile tracking, they only represent state uncertainties by a covariance matrix and this need not
be adequate in the space surveillance environment. Because of the need to propagate uncertainties over ex-
tended time intervals in the absence of measurement updates, higher-order cumulants (e.g., skewness, excess
kurtosis) can become non-negligible and must be accounted for in order to achieve uncertainty consistency.

In this AFOSR program and in another STTR funded by AFOSR (topic AF09-BT11), we developed a
variety of nonlinear filters specialized from the general Bayesian state estimator and showed that many of
them correctly capture statistics beyond a Gaussian state and covariance and retain uncertainty consistency
over long propagations. Table 1 summarizes some of the advantages and disadvantages of these filters.
Although no special attention was given to the extended Kalman filter (EKF) and particle filter, they are
nevertheless included in the table for completeness. We do not propose their use in space surveillance
applications. The UKF, while costing about the same to run as the EKF, is more accurate and numerically
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Table 1: Comparison of some nonlinear filters.
Filter Advantages Disadvantages

Extended Kalman Filter Ubiquitous Uncertainty is only represented by a co-
variance; partial derivatives of the dy-
namics and measurement models are re-
quired; generally less accurate than the
UKF

Unscented and Gauss-
Hermite Filters

Derivative-free Uncertainty is only represented by a co-
variance

Edgeworth Filter Can represent any uncertainty within a
desired accuracy by increasing the num-
ber of cumulants in the representation;
derivative-free

Computationally feasible only for
weakly non-Gaussian densities

Reduced Edgeworth Filter As in the Edgeworth filter, but op-
timized to account for possible near
Gaussianity in one or more state space
coordinates

As in the Edgeworth filter

Adaptive Gaussian Sum
Filter

Can represent any uncertainty within
a desired accuracy by increasing the
number of Gaussians in the mixture;
straightforward to implement by run-
ning a bank of UKFs in parallel

Representation of weakly non-Gaussian
densities is expensive; computationally
feasible only in a few dimensions

State Transition Tensor
Filter

Can represent any uncertainty within a
desired accuracy by increasing the order
of the Taylor series expansion; very ef-
fective for representing both weakly and
highly non-Gaussian densities

Partial derivatives of the dynamics and
measurement models are required; inte-
gration of the STT ODEs is expensive

Particle Filter Can represent any uncertainty within a
desired accuracy by increasing the num-
ber of “particles” in the representation

Very expensive; accuracy scales as
O(N−1/2) where N is the number of
particles

more stable. The particle filter is usually reserved as a “last resort” and would be too expensive to use in an
operational system.

Figure 2 shows how the root-mean-square (RMS) cost error, a metric for quantifying uncertainty con-
sistency, scales according to the dimension of the representation (i.e., the number of degrees of freedom
required to store the state PDF) and the number of sigma points (i.e., the number of orbital propagations
required in the filter prediction step). The “ideal” filter would achieve a negligible RMS cost error with
minimal computational cost either in terms of the dimension of the represented PDF or the number of sigma
points. The adaptive Gaussian sum filter (AGSF) and the state transition tensor filter (STTF)∗ show the most
promise for accurately representing a state’s uncertainty. However, beware that the STTF results are based
only on unperturbed Keplerian dynamics in which the implementation of the filter is trivial. It remains to
see how the STTF performs under a full nonlinear gravity model.
∗The state transition tensor filter is not based on the propagation of sigma points, so it does not appear in the right figure.
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Figure 2: Dependence of the root-mean-square (RMS) cost error on the dimension of the representation
(left) and the number of sigma points (right). Blue disks (•) imply use of the EGM96 degree and order 70
gravity model while red squares (�) imply use of unperturbed Keplerian dynamics.

1.1.1.2 Gaussian Sum Filters A Gaussian sum is a mixture density of the form

p(x) =
N∑

α=1

wαN (x;µα,Pα),

where the weights wα are non-negative scalars which sum to unity and N (x;µ,P) denotes the Gaussian
PDF with mean µ and covariance P; i.e.,

N (x;µ,P) =
1√

det(2πP)
exp

[
−1

2
(x− µ)TP−1(x− µ)

]
. (5)

The Gaussian sum filter (GSF) is based on a fundamental result of Alspach and Sorenson [4] which states
that any PDF can be approximated arbitrarily close (in the L1 sense) by a weighted sum (mixture) of Gaus-
sian PDFs henceforth called a Gaussian sum. Thus, Gaussian sums provide a mechanism for modeling
non-Gaussian densities and for more accurately approximating the solution of the FPKE. Computationally,
the GSF has the added advantage of being parallelizable since filters such as the EKF or UKF act inde-
pendently on each component Gaussian in the prediction and correction steps. With regards to updating the
weights within the filter, such a scheme is clearly dictated from Bayes’ rule following a measurement or
track update (fusion). However, there is not complete agreement on how the weights should be updated (if
at all) following a prediction.

One key feature of the new GSF developed in this effort and communicated in the paper [5] is the absence
of a procedure to update the mixture weights following the implementation of the filter prediction step.
The accuracy and consistency of the propagated uncertainty is ensured by representing the Gaussian sum
in (traditional or alternate) equinoctial orbital elements with component means, covariances, and weights
initially selected (by solving an L2 optimization problem offline) such that the (square-root version of the)
UKF [6], when acting in parallel on each component, accurately approximates the solution of the FPKE. The
number of Gaussian components required to achieve an accurate approximation is chosen adaptively based
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nonlinear 
transformation 

 

Figure 3: Depiction of a single Gaussian and its Gaussian sum approximation undergoing a nonlinear trans-
formation.

on the length of the propagation time and the initial error (standard deviation) along the radial direction
(semi-major axis coordinate). Consequently, by representing the PDF in the equinoctial elements, the new
algorithm achieves superior computational efficiency because it only requires a Gaussian sum along one
dimension.

While others have proposed methods for adapting the weights based on various online L2 optimization
criteria [7–9], we have found that the application of these methods to our existing GSF does not improve un-
certainty consistency, but rather causes the accuracy of the Gaussian sum representation to degrade slightly
[5]. We attribute these findings to the fact that our GSF is already very efficient because it solves an L2

optimization once offline which is used thereafter in any scenario through a lookup table. In what follows,
we motivate and define the specific optimization problem we solve.

The underlying optimization problem fundamental to our GSF requires the refinement of a single Gaus-
sian PDF into a Gaussian sum. The component means, covariances, and weights of the mixture are chosen
such that each Gaussian component remains Gaussian (up to a prescribed accuracy) when propagated by
the UKF under the nonlinear dynamics. The refinement methodology is illustrated in Figure 3. Under a
nonlinear transformation, a Gaussian (represented by the thick black ellipse) need not be mapped to a Gaus-
sian (e.g., the level surfaces of the transformed distribution could look crescent-shaped). However, in a
sufficiently small neighborhood, any (smooth) nonlinear map will be approximately linear. Consequently,
Gaussians with smaller covariances (represented by the colored elliptic disks) remain more Gaussian than
those with larger covariances under the nonlinear mapping. Therefore, a Gaussian sum refined by approx-
imating each constituent Gaussian by a finer Gaussian sum will exhibit better behavior through nonlinear
transformations. It suffices to optimally refine the unit one-dimensional Gaussian N (x, 0, 1); refinement of
a multivariate Gaussian with an arbitrary covariance is obtained by a series of linear transformations detailed
in [5].

We now derive a Gaussian sum approximation of the unit one-dimensional Gaussian N (x; 0, 1). The
problem has an obvious trivial solution which perfectly approximates the target, namely the Gaussian sum
with a single component. However, as motivated earlier, the idea is to construct a Gaussian sum approxima-
tion whose component standard deviations σα are smaller than some fixed value σ < 1 so that the Gaussian
sum more accurately represents the true distribution under a nonlinear transformation. This requirement
leads to a constrained nonlinear optimization problem. That said, we assume the target Gaussian sum has
the form

pGS(x) =
N∑

α=1

wαN (x;µα, σ2
α),

for some predetermined length N > 1 and define

E =
1
2
‖N (x; 0, 1)− pGS(x)‖2L2 =

1
2

∫ ∞

−∞

[
N (x; 0, 1)−

N∑

α=1

wαN (x;µα, σ2
α)

]2

dx. (6)

The weights wα, means µα, and standard deviations σα of each component are determined from the solution
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Figure 4: Plots of the Lp error between the unit one-dimensional Gaussian and its Gaussian sum approxi-
mation obtained using the suboptimal optimization algorithm.

of the following L2 optimization problem:

Minimize
w1,...,wN , µ1,...,µN , σ1,...,σN

E

Subject to
N∑

α=1

wα = 1, wα ≥ 0, α = 1, . . . , N,

µ1 ≤ µ2 ≤ · · · ≤ µN ,
σα ≤ σ < 1, α = 1, . . . , N.

(7)

Noting the identity
∫
N (x;µ1,P1)N (x;µ2,P2) dx = N (µ1 − µ2; 0,P1 + P2),

it follows that (6) reduces to

E =
1
2
wTMw −wTn+

1
4
√
π
, (8)

where
(w)α = wα, (n)α = N (µα; 0, σ2

α + 1), (M)αβ = N (µα − µβ; 0, σ2
α + σ2

β).

The minimization of (8) over the individual weights, means, and standard deviations subject to the
constraints in (7) is a difficult nonlinear optimization problem. A suboptimal yet computationally tractable
algorithm which approximates the solution of (7) can be obtained as follows. Specifically, we constrain
each of the component Gaussians to have a common standard deviation σα = σ < 1 and propose fixing the
means µα according to

µα = −m+ σ(α− 1), (9)

for α = 1, . . . , N , where m > 0 and N = d1 + 2m/σe. Note that the means are evenly distributed with
the left-most and right-most components located at x ≈ ±m. In order to ensure adequate accuracy around
the tails, we propose setting m = 4 if σ ≥ 1

2 , otherwise m = 6. With these additional constraints, the
optimization problem (7) reduces to a quadratic programming problem which is straightforward to solve
using elementary methods.

Figure 4 shows plots of the L1, L2, and L∞ error between the unit one-dimensional Gaussian and
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Figure 5: Scatter plots of the component weights and means computed using the suboptimal algorithm (i.e.,
minimizing only over the weights) and by solving the full (optimal) optimization problem (i.e., minimizing
over the weights, means, and standard deviations).

its Gaussian sum approximation computed using the suboptimal approach described above. Up to around
N ≈ 100, the three Lp errors all decrease, but they plateau to around 10−8 for N ' 100. We believe this
plateau is not because of numerical stability issues (the matrix M in (8) has a condition number on the order
of 105) but simply because we are fixing the standard deviations and means via (9) and only minimizing over
the unknown weights; this need not be optimal. Notwithstanding these comments, the simulation studies
considered in the paper [5] use this (suboptimal) refinement scheme with N as high as 1000 without any
adverse effects.

We conclude this section by presenting some preliminary solutions of the full optimization problem
(7). We have found that the numerical conditioning of this problem worsens as the target length N of the
Gaussian sum increases thereby rendering double precision floating-point arithmetic largely inadequate. To
facilitate an accurate solution, we have used the MAPLE ‘Optimization’ package which takes advantage of
built-in library routines provided by the Numerical Algorithms Group with the ability to call them within an
arbitrary-precision software floating-point environment.

Figure 5 shows various scatter plots of the component weights and means computed using two differ-
ent methods. The first method uses the suboptimal approach which fixes the means according to (9) and
subsequently optimizes over the weights only. The second method solves the full optimization problem (7).
Each subplot assumes a different target length N and standard deviation σ. One interesting observation is
that the optimal component standard deviations lie on the constraint boundary; i.e., σα = σ for all α. Most
importantly, by solving the full optimization problem, the locations of the means are no longer uniformally
distributed and the resulting L2 error is smaller than that obtained by solving the suboptimal problem. In
particular, to get the L2 error down to 10−7 requires aboutN = 28 Gaussians using the suboptimal method
but only about N = 9 Gaussians when solving the full optimization problem! We emphasize that the full
problem, although very expensive to solve, can nevertheless be done offline. One can generate a library of
Gaussian sum approximations to N (x; 0, 1) for various values of N and σ.

1.1.1.3 Batch Estimation and Sliding Window Batch Estimation Given a sequence of m measure-
ments Zm ≡ {z1, . . . ,zm} at times t1, . . . , tm commensurate with the model (3), the objective of initial
orbit determination (IOD) and batch estimation is to obtain a representation of the (joint) posterior PDF
p(x0, . . . ,xm|Zm), where xk denotes the dynamical state of the system at time tk, and to extract mean-
ingful statistics (e.g., mean, covariance) from it in a consistent manner. It is assumed that the state evolves
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according to the discrete-time model
xk+1 = fk(xk) +wk, (10)

where {wk} is a zero-mean white noise sequence with E[wkw
T
j ] = Qk δkj . The following independence

assumptions are implied between the prior x0, the measurement noise sequence {vk}, and the process noise
sequence {wk}:

E[x0w
T
k ] = 0, E[x0 v

T
k ] = 0, E[vkwT

j ] = 0.

Appealing to Bayes’ rule and the above assumptions, the joint posterior PDF is derived in Jazwinski [2,
§5.3] and is found to be

p(x0, . . . ,xm|Zm) = c p0(x0)
m∏

k=1

pwk(xk − fk−1(xk−1))
m∏

k=1

pvk(zk − hk(xk)), (11)

where c is a normalizing constant, and p0 is the prior PDF of the state x0 at time t0. Further, in (11), the
pwk and pvk , for k = 1, . . . ,m, are the respective PDFs of the process and measurement noise processes. In
practice, they are often assumed to be Gaussian with zero mean and covariances of Qk and Rk, respectively.

The posterior PDF (11) is the complete description of the uncertainty of the state at each of the measure-
ment times. In practice, a finite dimensional representation of the uncertainty is sought. Thus, the emphasis
of the batch estimation problem is on how statistical information can be extracted from (11) consistently
and accurately. Nonlinear optimization theory provides a framework for computing the modal trajectory or
maximum a posteriori (MAP) estimate of (11). For a Gaussian prior with x0 ∼ N(x̄0, P̄0) and Gaussian
noise processes as described above, the modal trajectory is obtained by solving the least squares or batch
problem

(x̂0, . . . , x̂m)MAP = arg max
x0,...,xm

p(x0, . . . ,xm|Zm)

= arg min
x0,...,xm

1
2
‖x0 − x̄0‖2P̄−1

0
+

1
2

m∑

k=1

‖xk − fk−1(xk−1)‖2Q−1
k−1

+
1
2

m∑

k=1

‖zk − hk(xk)‖2R−1
k

.
(12)

In initial orbit determination, we do not have a prior; the term 1
2‖x0 − x̄0‖2P̄−1

0

is removed from the above
formulation.

Methods for solving nonlinear least squares problems, such as Gauss-Newton, full Newton, and quasi-
Newton updates, along with globalization methods such as line search and trust region methods including
Levenberg-Marquardt [10], are efficient and mature and will not be discussed further here. In the astrody-
namics community, such solution techniques are called differential correction methods. In any nonlinear
least squares problem such as (12), one must provide the solver a starting guess in order to initiate the differ-
ential correction method. This is the initial orbit determination (IOD) problem. In the case of measurement
data from a single radar or EO sensor, a first estimate can be obtained using the classical methods of Lam-
bert or Gauss (see, for example, [11]). Additionally, for angle-only observations, a recent algorithm due
to Gooding [12] has shown promise for IOD scenarios involving both ground-based and space-based EO
sensors [13].

Seen as a hybrid between batch estimation and the sequential prediction-correction filter discussed ear-
lier, the sliding window batch estimation filter (SWBEF) processes n of the m measurements (through a
batch process) over a sliding window. The SWBEF is the full batch estimation algorithm when the sliding
window encloses the entire measurement sequence (n = m) and is the traditional predict-correct sequential
filter when n = 1.

The use of a SWBEF can be very effective in addressing the problems of anomaly detection and UCT
resolution because of the need to propagate states and uncertainties over long time gaps and to precisely
evaluate likelihood ratios used in the association problem. In particular, in the problem of orbit determi-
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Figure 6: Schematics for the sequential prediction-correction filter, sliding window batch estimation filter
(of length n = 1), and full batch estimation.

nation in the low Earth orbit (LEO) regime (e.g., a two minute track generated from radar measurements
every ten seconds apart), it is observed that the posterior PDF p(xk|Zk) is often well approximated by a
single Gaussian in equinoctial orbital elements [14] or Cartesian ECI coordinates [15]. However, the pre-
dicted PDF p(xk+1|Zk) can become highly non-Gaussian if the propagation time is long or the uncertainty
along the radial direction (semi-major axis) of the posterior is large. One can expend tremendous compu-
tational resources in accurately representing the predicted PDF (using, for example, a high fidelity GSF or
STTF). Yet, when the predicted PDF p(xk+1|Zk) is updated with a new report zk+1, the resulting density
p(xk+1|Zk+1) tends to collapse to something which is nearly Gaussian. The SWBEF bypasses the expen-
sive representation of highly non-Gaussian densities arising from the prediction step and instead waits until
a new report (measurement, track) becomes available and then performs the prediction and correction step
simultaneously. Further details on the SWBEF are included in the paper [16].

1.1.1.4 Status A number of papers have been submitted to journals and conference proceedings on un-
certainty modeling and management including ones on Gaussian sums [5, 17–19], the Edgeworth filter [19],
the sliding window batch estimation filter [16], and the batch estimation problem [15]. Future work on
this objective will aim to mature the Gaussian sum filter and the underlying optimization problem. Other
alternate nonlinear filtering algorithms will also be pursued including the state transition tensor filter.

1.1.2 Multiple Hypothesis Tracking

Data association or correlation methods for multiple target tracking divide into two broad classes: single
frame methods and multiple frame methods. The single frame methods include nearest neighbor, global
nearest neighbor based on a two-dimensional assignment solver, and joint probabilistic data association
(JPDA) [20]. For many widely spaced objects and a clear background, nearest neighbor may be appropriate,
especially for space surveillance. For noisy backgrounds, JPDA can mitigate misassociation by updating the
track with a weighted combination of all the measurements within a gate of the projected track state. The
most successful of the multiple frame methods are multiple hypothesis tracking (MHT) [21] and multiple
frame assignment (MFA) [3, 22]. MFA is an optimization-based formulation of MHT and is now considered
to be the industry standard replacement of MHT. MHT/MFA methods mitigate misassociation by the ability
to hold difficult correlation decisions in abeyance until additional information is available, as well as provide
an opportunity to change past decisions to improve current decisions. In dense tracking environments such
as breakups or geoclusters with closely spaced objects, the performance improvements of multiple frame
methods over single frame methods are significant, making MHT/MFA the preferred solution.

The challenges of space surveillance, such as large coverage gaps and both sparse and dense target
scenarios, require investigation of major extensions to current MHT/MFA architectures, including bias esti-
mation and ambiguity assessment. A major new necessity is joint bias estimation and correlation, which may
be needed for overlapping coverage, but is mandatory in handover situations, especially in large coverage
gaps. We now discuss these requirements and present some MHT results obtained through this effort.
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1.1.2.1 A Brief Review of MHT/MFA Multiple hypothesis tracking normally uses a moving window
over a set of data frames. The concept of a “data frame” is central to most modern data association or
correlation algorithms. For initial orbit determination, the data frames correspond to sets of sensor reports
in which each target is seen at most once in each frame. For track maintenance or extension, one data frame
corresponds to a set of system tracks, while the remaining frames are composed of sensor reports.

LetZjk = {zi
j
k
k }

Mj
k

ijk=1
denote a sequence† of noise-contaminated measurements of lengthM j

k from sensor

j at time tk. Note that as the sensor index j and time index k are varied the number of measurements M j
k

can vary due to field of view issues, false alarms, missed detections, etc.‡ We now define A as the list of
time-sensor index pairs (k, j) such that Zjk is non-empty. The cardinality of A is N . Let ZN = {Zjk}A
denote the data from these N sensor scans, potentially covering multiple times as well as multiple sensors.
The central data association problem in multitarget and multisensor data fusion can be generally posed as
[3]

H∗ = arg max
H∈H

LH(N), LH(N) =
Pr(H|ZN )
Pr(H0|ZN )

, (13)

where H denotes a partition of the data into tracks and false alarms, H0 denotes a reference partition in
which all reports are declared to be false alarms, H denotes the set of all feasible data partitions of the data
ZN , and H∗ denotes the optimal partition. Typically, one replaces the N frame likelihood ratio in (13) with
a negative log-likelihood score

cH(N) ≡ − lnLH(N), (14)

which changes (13) to a minimization problem.

1.1.2.2 The Multidimensional Assignment Problem A derivation of the problem and the equivalence
with MHT using an N -scan back approximation has been previously given by Poore [3] and will not be
repeated here. The following is a brief summary of the formulation, but not the derivation. Consider a
layered graph G with N distinct node sets (layers) Ak = {0, 1, . . . ,mk} indexed by k ∈ K = {1, . . . , N}
and arcs A ⊂ A1 × · · · ×AN . (In tracking applications, a node set Ak is called a frame of data.) A specific
arc in A is denoted by the N -dimensional multi-index a = (a(1), a(2), . . . , a(N)) where each a(k) ∈ Ak.
Next, define a section Ak` = {a ∈ A | a(k) = `}. For each k ∈ K, associate to each section Ak` a
nonnegative integer nk` ≥ 1 for ` = 1, . . . ,mk that will denote the number of times the index (k, `), i.e.,
can be assigned.

In addition, xa is assumed to be a zero-one variable for each a ∈ A with at least two nonzero indices.
TheN -dimensional problem (multidimensional assignment problem of dimensionN ) can then be expressed
as

Minimize
∑

a∈A
caxa

Subject To
∑

a∈Ak`
xa ≤ nk` for k ∈ K and ` ∈ Ak \ {0}, (15)

xa ∈ {0, 1},

where each nk` is the number of times a report ` = 1, . . . ,mk on frame k can be assigned. In most tracking
applications, nk` = 1; however, as suggested by real orbital data provided by JFCC SPACE, an object may
be seen more than once in a pass over a sensor and thus there is a need to allow multiassignment. This is
a new feature of the association problem for space surveillance. The cost ca is the aforementioned negative

†No distinction is made between objects being observed as the association (which is being solved for) is not known a priori.
‡In space tracking false alarms are rare, but missed detections are quite common.
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log of a likelihood ratio represented above as the ratio of two probabilities with the normalizing probability
that each tracklet§ is an uncorrelated track (or false alarm in measurement based tracking).

While the association problem can be formulated as a zero-one linear programming problem, the as-
signment formulation has been shown to be at least two orders of magnitude faster on larger problem sets.
We propose the use of four classes of algorithms: (a) branch and bound based on Lagrangian relaxation to
produce a guaranteed optimal, (b) a Lagrangian relaxation algorithm for a heuristic, (c) a partial branch and
bound to improve the Lagrangian heuristic, and (d) an anytime algorithm that can control memory usage and
runtime. For (a) and (c) we make use of A*-search to compute the k-best solutions for the multidimensional
assignment problem. This provides the basis for ambiguity assessment.

1.1.2.3 Treatment of Biases A key challenge in the correlation and fusion of multiple sensors is that of
dealing effectively with sensor biases and navigation errors, for which we also use the term “biases.” All
fusion systems that integrate multiplatform multisensor data require that sensor registration be performed
to remove biases before correlation and fusion. Otherwise, the data from each sensor will be misaligned,
and performance will degrade. While “biases” are stochastic in nature, they represent systematic errors that
do not average out and lead to misassociation and redundant tracks in a multisensor environment. Bias
treatment can generally be divided into two cases: (i) association is known or some form of truth is available
and (ii) association is unknown and no truth is available.

In the first case, the issue of association has already been separated out and the bias problem can be
isolated. This is the case when the association between reports and objects is known, as might be the case
with widely spaced targets. This is also the case when truth (or “fuzzy” or “approximate” truth, which might
include some small noise) is available. An advantage of the space surveillance tracking environment is the
availability of approximate truth data for a small collection of objects with well known trajectories. These
can be used to estimate the biases for the sensors in the network, and weekly bias averages are often used to
debias the following week’s data. This calibration and debiasing of the sensor reports and navigation errors
is performed using nonlinear least squares techniques, which can also reveal the observability [23, 24]. The
drawback of this approach is that the sensor biases are not constant, and weekly updates can be insufficient
for sensors with a larger bias drift. Furthermore, even if this debiasing were perfect, it still does not address
the issue of residual biases, which is the difference between the true sensor bias and the estimated bias
which was used to debias the sensors. Residual biases must be treated by a consider analysis or by the
Schmidt-Kalman filter [2, 25]. Even the new multi-billion dollar sensors used in air and ground tracking
(e.g., SBX, FBX, TPY-2) are subject to these issues, so the older sensors that make up a large portion of the
space surveillance network will necessarily exhibit them as well.

In the second case, the association is unknown (and truth is unavailable) and both the association and
bias must be solved for jointly. This is a much more difficult problem, and it is generally treated with what
is known as “pattern matching” [26–28]. Unlike the first case, which relies on truth or known associations,
pattern matching can be performed online using only readily available data. Because of this the joint bias
and association problem is the key bias issue needed for long term propagation, and the remainder of this
subsection will focus on it.

The problem of association and fusion in the presence of biases is illustrated in Figure 7 (with full math-
ematical details in [26–28]). Both figures show estimates of object positions in two-dimensional space with
circles representing the covariance estimates. The large covariances correspond to previously-established
tracks that have been predicted into the field of view of the next sensor, which has tracks established with the
smaller covariances¶. Consider first the situation of Figure 7(a), where bias has not been accounted for. Due
to the overlap of the “three-sigma” error circles, four tracks from each sensor will be incorrectly assigned
to each other, while three tracks from each sensor remain uncorrelated. Compare this with the situation of

§A tracklet is a short track segment composed from about 10-12 sensor measurements.
¶This example is for the track-to-track problem, though the ideas are equally applicable for measurement-to-track.
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(a) (b)

Figure 7: (a) The effect of bias on data association. (b) Data association after bias correction.

Figure 7(b), where the concurrent bias estimation and association described later have been used to remove
residual sensor biases so that the estimates now line up correctly. In this case, most estimates emanating
from common objects are correctly correlated, with two estimates that do not correlate.

The bias problem for handover, track-to-track association (correlation), and fusion described above has
been identified as a major obstacle for missile defense and manifests itself even for the newest MDA sensors;
thus, it (along with the analogous measurement-to-track problem) will certainty present difficulties for the
UCT problem in space surveillance.

We conclude this subsection with a brief description of the proposals for resolving the problem of joint
association and bias estimation. The problem addressed in this work is that of associating two classes of
objects in the presence of a bias which is modeled as a displacement between the two classes. Here it is
assumed that each object can be assigned at most once (this can be generalized). The first collection of
objects is enumerated by i = 1, . . . ,m, and the second by j = 1, . . . , n. The formulation of this association
problem is that of the two-dimensional inequality-constrained assignment problem, but with an unknown
displacement between the objects. Inequality constraints are used since not all objects need be assigned.

Minimize(x,d) d
TR−1d+

m∑

i=1

n∑

j=1

cij(d)xij

Subject To:
n∑

j=1

xij ≤ 1 (i = 1, ...,m), (16)

m∑

i=1

xij ≤ 1 (j = 1, ..., n),

xij ∈ {0, 1},

where d = (dx, dy) is the vector of prior estimates of the sensor biases and R is the correlation matrix for
these estimates. The correlation costs take the form [21, 28]

cij(d) =
1
2
(xi + dx − (yj + dy))T (Pii +Qjj − Sij − Sji)−1(xi + dx − (yj + dy))

+
1
2

ln (det(Pii +Qjj − Sij − Sji))− γij ,

where Pii and Qjj are the covariances of the track state estimates xi and yj , respectively, while Sij denotes
the cross-correlation between xi and yj , which may arise from common process noise or common priors in
the sensor estimation filters.

As posed, the problem (16) falls within a class of nonconvex mixed-integer nonlinear programming
problems (MINLP) [29–32]. The techniques for solving convex MINLP problems include outer approxi-
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mation, generalized Bender’s decomposition, extended cutting plane, branch and bound, and branch and cut
methods. For the nonconvex case, one attempts to extend these methods by using convex envelopes or by
developing convex under estimators of the objective function and constraints. In addition, sampling meth-
ods such as clustering methods, evolutionary algorithms, simulated annealing, and tabu search may also be
utilized.

For branch and bound, the lower bound that one must compute at each node in the branch and bound tree
must be a global lower bound. To achieve this, one often relaxes the discrete variables to continuous ones and
develops convex underestimators for the objective functions and constraints that facilitate the computation
of this global lower bound. An example of this is the α-branch and bound method of Adjiman, Androulakis,
and Floudas [33], which can be applied to the current problem.

The branch and bound framework developed herein does not follow these approaches for MINLP prob-
lems. The constraints are already convex in that they are affine. The objective function is nonconvex;
however, we can develop a convex (affine) lower approximation to the objective function by using

bij =
1
2

ln(det(Pii +Qjj − Sij − Sji))− γij for i 6= 0 and j 6= 0, and (17)

bij = cij for i = 0 or j = 0,

both of which are independent of the displacement d. Furthermore, bij ≤ cij(d), thereby providing a basis
for the global lower bound needed in the branch and bound procedure. We can make effective use of an
assignment solver so there is no need for relaxation of the discrete variables.

For space surveillance, a multidimensional (N > 2) version of the joint bias estimation and correlation
problem must be formulated and likelihood ratios derived. Such algorithms would be based on Lagrangian
relaxation and an anytime branch and bound algorithm similar to that developed for the two-dimensional
assignment problem with appropriate upper and lower bounds on optimality.

1.1.2.4 Uncertainty in Correlation The goal of this algorithm is the development of an approximation
to the probability of correct association. This has been achieved for the sequential k-best approximation to
MHT based either on a k-best approach [34] or Markov Chain Monte Carlo (MCMC) methods [35], but not
yet for the full multidimensional assignment problem.

In the k-best approach, an MHT system directly maintains a setHk of k “complete” data association hy-
potheses Hi ∈ Hk, i = 1, . . . , k within a sliding window of sensor data frames to approximate the optimal
solution that maximizes the data association problem. Each alternative solution represents a different com-
plete data association hypothesis Hi. LetHk = {H1, H2, . . . ,Hk} denote a set of k ranked solutions, such
that H1 corresponds to the “best” solution returned from the assignment solver, H2 to the “second-best”,
etc.; that is,

cH1(N) ≤ cH2(N) ≤ . . . ≤ cHk(N),

where the costs are defined as negative log-likelihood terms. As long as k is sufficiently large, it is the case
that

Pr(H0|ZN ) +
k∑

i=1

Pr(Hi|ZN ) ≈ 1,

and therefore

Pr(Hi|ZN ) =
Pr(Hi|ZN )

1
≈ Pr(Hi|ZN )

Pr(H0|ZN ) +
∑k

j=1 Pr(Hj |ZN )
.
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Using (13) and (14), we obtain [21, 36]

Pr(Hi) ≈
e−cHi (N)

1 +
∑k

j=1 e−cHj (N)
,

which gives the probability of a hypothesis in terms of its cost cHi .
Now, let χij denote the probabilistic data association event that measurement xi associates with yj .

Then, the probability Pr(χij) of this event is given by

Pr(χij) ≈
∑

H∈Hij
Pr(H|ZN ),

where Hij ⊆ Hk denotes the subset of those data association hypotheses from the set Hk that postulate the
event χij .

1.1.2.5 Results Though there is still much work to be done in developing an MHT for space surveillance,
some initial investigations have been conducted under this effort. Here we will present results from two
breakup scenarios, which are described in Table 2. For each scenario we will compare MHT results using
different nonlinear filters including (a) a single Gaussian (UKF), (b) a course Gaussian sum, (c) a fine
Gaussian sum, and (d) the non-statistical method employed in the AFSPC Astrodynamic Standards ROTAS
program. The number of terms in the Gaussian sum is given byN , withN = 1 indicating a single Gaussian,
and N = 1† indicating the non-statistical (ROTAS) method.

Table 2: Description of two breakup scenarios.

Scenario One Scenario Two

Regime LEO LEO
Bias, drag, maneuvers Not taken into account
No. of tracklets 27 42
Duration 6.5 hours 24 hours
No. of sensors 4 1

Figure 8 compares MHT results between pairs of methods for the two scenarios. The axes are indices
into the tracklets and each pixel tells whether the corresponding pair of tracklets are in the same track in
both methods (black), neither method (white), method one only (red), or method two only (green). Note
that black and white pixels indicate agreement between the methods, while red and green pixels indicate
disagreement. Table 4 supplements the information in the figures with the metrics defined in Table 3.

Table 3: Definitions of the track and summary metrics.

Track Metric T1 Number of tracks in the first method
Track Metric T2 Number of tracks in the second method
Track Metric Tb Number of tracks that appear in both methods with the same as-

sociated tracklets
Summary Metric S Percentage of tracklet pairs for which both methods agree on

whether or not they emanate from a common object

The left three plots in Figure 8 and the left half of Table 4 show the results for Scenario One. For this
scenario, the single Gaussian (UKF), coarse Gaussian sum (N = 17), and fine Gaussian sum (N = 56)
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Figure 8: Plots comparing MHT results using different nonlinear filters.
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Table 4: Track and summary metrics (defined in Table 3) for Scenario One (left) and Scenario Two (right)

N1 N2 (T1, T2, Tb) S

1 56 (18,18,18) 1.000000
17 56 (18,18,18) 1.000000
1† 56 (18,18,13) 0.980796

N1 N2 (T1, T2, Tb) S

1 121 (26,24,11) 0.973923
56 121 (24,24,22) 0.995465
1† 121 (37,24,6) 0.976190

all give the same answers. Specifically, all three methods produce the exact same 18 tracks. From this
we can conclude that in breakup scenarios with short time intervals between updates, propagating a state
and covariance using the UKF is robust and sufficient – the higher order representations have validated this
conclusion. In contrast, the non-statistical approach also produces 18 tracks, but only 13 of those tracks are
the same as the tracks produced with the statistical methods. This indicates that even over a short scenario
the non-statistical approach is insufficient and need not produce the correct solution.

The right three plots in Figure 8 and the right half of Table 4 show the results for Scenario Two. Here
we see a reasonable amount of disagreement between the single Gaussian (UKF) and fine Gaussian sum
(N = 121), but almost exact agreement between the coarse Gaussian sum (N = 56) and the fine Gaussian
sum. This “convergence” as the fidelity of the filter increases provides evidence that advanced filtering
techniques such as adaptive Gaussian sum filters can be used to produce the correct solutions. It is interesting
to look a bit closer at the form of the discrepancy between the two Gaussian sum filters. The coarse Gaussian
sum associates tracklets (17, 36) and (23, 35), while the fine Gaussian sum switches these pairs to (17, 35)
and (23, 36) – the only difference in results between these two methods is a single association decision.
Moving to the non-statistical approach, we see a stark contrast. The non-statistical approach produced 37
tracks, indicating that it had trouble associating objects together (we can also see this by the large number of
green pixels in the figure). In particular, it made very few associations between tracklets that were separated
by long time intervals – the statistical methods did not have this problem.

Finally, we mention that the results presented here only focus on the best hypothesis from each method.
In cases where the best hypothesis has less than 100% of the total likelihood, the ambiguity must also be
considered in order to get “the full picture.” Even in these relatively small scenarios there was significant
ambiguity, though for simplicity the ambiguity is not included in the presented results.

1.1.2.6 Status The small breakup scenarios in LEO discussed above were presented at the AFOSR re-
view meeting on Sept. 11, 2010 and at the DARPA meeting on UCTs at Washington DC on Nov. 17, 2010.
Extensions to GEO and the joint association and bias estimation problem are ongoing.

1.1.3 Unresolved Closely Spaced Objects

Much of this section discusses algorithm components that have been developed under a Phase II SBIR,
“Hierarchical Image Processing for Closely Spaced Object (CSO) Resolution”. The core research problem
addressed in this part of the project is that of augmenting measurement generation algorithms to supply high-
quality measurement covariances and estimates of the uncertainty in object count in a small region of space,
called resolution uncertainty, for use in generating accurate orbit state covariances and data association
ambiguity information.

The innovative part of our approach is the use of multiframe ideas in two manners. First, we propose
to use multiple images from the sensor to generate high-quality individual images using image superreso-
lution techniques. Second, given a set of images, either directly from the sensor or preprocessed using the
above techniques, we will use multiple-frame, multiple-hypothesis expectation maximization (EM)-based
measurement generation to solve the problem of targets appearing in some frames while not appearing in
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others, the so-called stochastic resolution problem. A combination of such methods promises to substan-
tially improve the resolution and tracking of closely spaced objects.

1.1.3.1 Background on Image Processing The field of image processing for astronomy and space
surveillance has involved a significant amount of research focused on the problem of improving image
quality prior to extracting target measurement data. Single-frame image restoration methods involve various
techniques intended to reduce the noise in the image, reduce the blurring that results from optical diffraction
and atmospheric turbulence, or both. In general, noise reduction and blur compensation are at odds; most
methods that reduce blur will tend to amplify noise, and vice versa. These techniques include basic spa-
tial filtering [37], deconvolution approaches [38–40], variations on the CLEAN algorithm [41], and newer
techniques based on wavelet transform filtering [42].

All of the above methods for image restoration are intended to function using a single input frame of data
and, usually, some form of prior knowledge (such as the image noise statistics and the point spread function)
to generate a restored scene. One of the core innovations in this work is to broaden the view of the problem
to include multiframe methods, in which data from more than one collected image may be used to generate a
result. This additional data permits both resolution enhancement and consideration of measurement stability
in the presence of unresolved closely spaced objects. Multiframe image restoration methods in the literature
range from shift-and-add formulations with anti-aliasing through hybrid approaches such as the Drizzle
algorithm [43] all the way up through to image superresolution techniques.

Most of the image restoration algorithms discussed in the literature are pure image transforms; that is,
they take as input one or more images and produce a higher-quality output image. This alone is insufficient
for the purposes of tracking; we must convert the raw image data into a sequence of measurements that can
be correlated and fused to produce orbit state estimates. This process can be challenging during events such
as on-orbit collisions, where potentially large numbers of objects may reside within the field of view of a
sensor. Prior work by Numerica on tracking from infrared sensor data [44] has shown that multiple-frame,
multiple-hypothesis expectation maximization (EM)-based measurement generation has the ability to solve
the stochastic resolution problem by considering information from several consecutive frames of data to
determine the correct measurement count in the scene. Such algorithms stabilize the observed object scene
in the presence of potentially significant numbers of closely spaced objects and are discussed below.

1.1.3.2 Proposed Implementation Consider the case of an imaging sensor viewing one or more objects
as point sources (that is, the sensor resolution is insufficient to observe the objects in more than one pixel).
The observed image Y is a function of object position and magnitude, plus noise:

Y =
K∑

i=1

Gi(θi) + E,

where θi is a vector [µui, µvi, Ii]′ containing the centroid focal plane coordinates u, v and intensity magni-
tude I for object i. Further, E is the additive noise present in the image, and Gi is the (nonlinear) imaging
function. We would like to find an estimate θ̂i for each object i that maximizes the likelihood of the ob-
served image. It may be observed that the structure of this problem is similar to that of the multiframe
image restoration problem presented by Elad and Feuer [45]; this analogy is intentional. We will discuss the
combined image restoration and measurement extraction problem below.

In the special case where the imaging function can be approximated by a Gaussian blur function resulting
from sensor limitations and atmospheric turbulence, we can be more precise in the formulation of the above
equation. We collapse the 2D image data into a column vector for ease of manipulation. For a single
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measured pixel yj , the relationship between the point sources and the pixel intensity is given by

yj =
K∑

i=1

Ii

∫ vmaxj

vminj

∫ umaxj

uminj

1

2πσuσv
√

1− ρ2
e
− 1

2
1

1−ρ2
(
(u−µui)

2

σ2
u

+
(v−µvi)

2

σ2
v
− 2ρ(u−µui)(v−µvi)

σuσv
)
dudv + Ej

for an arbitrary Gaussian blur function B. If, as is typical, the blur function is spherical (that is, B = σ2I),
then ρ = 0 in the above equation. This form is separable, and therefore yj may be expressed as a closed-form
solution in terms of the error function for computational efficiency.

We now have a model for the intensity of each pixel in the image that we can use to formulate a nonlinear
estimation problem for the point source locations and intensities. This nonlinear estimation problem, how-
ever, tends to be very poorly conditioned and have local minima. Good starting guesses for the point source
locations are required if the estimator is to converge to the correct solution. Also, it is clear that this model
requires some prior estimate of the number K of point sources to be sought in the image. In some cases this
estimate will be available from the sensor tasking (if the objects in the field of view are well-characterized);
however, this is not typically the case for objects resulting from new space events. The key to solving this
problem lies in the multiple hypothesis approach. We have constructed a range of alternate approaches to
generating high-probability prior object counts and locations. Then, given these priors, we can construct
several different measurement hypotheses for the image.

We have observed that the most effective method for generating a measurement prior, if the input datarate
supports use of the technique, is that of first constructing a synthetic high-resolution image from a sequence
of low-resolution images (multiple frame image restoration). In this case, the formulation of the problem is
now

Y = H(X) + E,

X =
K∑

i=1

Giθi

with a linear transform H representing blur, warp, and decimation functions between a theoretical high-
resolution image X and the measured low-resolution images. We accumulate sufficient measured images
to solve the sparse linear estimation problem for the high-resolution image, and then use standard peak
extraction techniques to obtain a prior for the nonlinear parameter estimation problem described above.

While the use of multiframe image restoration for astronomy applications is not novel, our unique ap-
proach combines the image restoration problem with source position estimation for tracking in the presence
of unresolved closely spaced objects. Figure 9 shows the multiple frame image restoration used in conjunc-
tion with model-based measurement generation to achieve maximum point source resolving power. Panel (a)
shows a raw measured image (single-band data in false color) of a set of point sources at locations marked
with white ‘+’ symbols, along with measurements and covariances (blue ‘∗’ and ellipses) generated from a
simple cluster and centroid approach. Panel (b) focuses on a small subset of the image containing several
unresolved point sources. Panel (c) is a synthetic high-resolution image of the same scene generated from
a sequence of images such as (a), with measurements constructed from the nonlinear optimization problem
described above. The advanced measurement generation algorithms have the ability to resolve point sources
with much greater efficacy than would be possible from a single-frame approach.

Using multiple consecutive frames of data, we consider whether the evolution of measurements over
time produces a consistent track picture. In order to solve this problem within an orbit determination context,
we require two additional items of information: the covariance associated with each of the estimated object
locations, and the uncertainty of the object resolution hypothesis. The measurement covariance is a function
of the signal-to-noise ratio for the object being observed. If there are multiple objects within a confusable
distance (overlapping blur regions) of one another, then the error associated with the centroid estimate is
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Figure 9: Measurement generation from sequence of linear and nonlinear inverse problems.

also a function of the distance to, and brightness of, the nearby objects. Failure to account for these effects
can result in an incorrect measurement covariance estimate. We present here the development for object
resolution uncertainty given two objects within a confusion distance from one another; development of the
more general form is anticipated as part of this research program. Suppose we have:

Y = G(θ) + E ∼ N(G(θ), σ2
nI);

that is, the intensity noise in the image is Gaussian and characterized by noise power σ2
n.

Let us consider the hypotheses that θ0 = 0 (the data consists of noise only), θ1 = [θobj1; 0] (the data
consists of object 1 only), θ2 = [0; θobj2] (the data consists of object 2 only), and θ3 = [θobj1; θobj2] (both
objects must be present to explain the data). The generalized likelihood of each of these hypotheses can then
be expressed as

f̂i(y) = (2π)−n/2σ−nn exp
[
− 1

2σ2
n

(Y −G(θ̂i))T (Y −G(θ̂i))
]
.

These likelihoods allow us to resolve the hypotheses described above. Critical for the resolution question
is the ratio of the likelihood that the data is explained by one object versus two. If the algorithm has
hypothesized the presence of two objects, but it is more likely that the data can be explained by only one
object, then we either (a) really do only have one object, or (b) have two objects that cannot be distinctly
resolved. These likelihood ratios then form the basis for incorporating measurement hypothesis probabilities
into the tracking problem.

1.1.3.3 Conclusion We have discussed two innovative approaches that combine to address tracking
problems for closely spaced objects, both using multiframe ideas, but in two subtly different ways. First,
we discussed using multiple images from the sensor to generate high-quality individual images using image
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superresolution techniques. Second, given a set of images, either directly from the sensor or preprocessed
using the above techniques, we showed how to use multiple-frame, multiple-hypothesis expectation max-
imization (EM)-based measurement generation to solve the problem of targets appearing in some frames
while not appearing in others, giving rise to a possible solution to both stochastic resolution and resolution
uncertainty problems. We have constructed a prototype of the combined multiframe approach; future work
will focus on use of this formulation to construct measurement covariances and resolution uncertainties for
tracking.

1.1.3.4 Status This work is ongoing. The processing of data in GEO has not yet started.

1.2 Accomplishments / New Findings

The primary objective of this program is to perform the necessary basic research to support the development
of a statistical, multiple hypothesis tracker (MHT) for space surveillance. Such a MHT framework can serve
as the next generation space surveillance system to maintain the space catalog, to identify uncorrelated
tracks, and to support conjunction analysis and sensor resource management. Key components in such
a system include a consistent characterization of uncertainty, physical modeling, multiple model filtering,
and the association problem of determining which tracklets/measurements emanate from which object. To
achieve a consistent characterization of uncertainty, Numerica has developed an adaptive Gaussian sum
filter which correctly represents and propagates uncertainties and adaptively selects the correct the number
of Gaussians in the mixture. Realtime online metrics support the coarsening and refining of the filter to
maintain consistent uncertainty. A sliding window batch estimation filter has also been developed and shown
to provide an accurate evaluation of the prediction error critical for correct anomaly detection and resolution
of UCTs. Several papers have been published on these uncertainty management and propagation. Numerica
has also acquired orbital data from JFCC SPACE and processing of this data has commenced using a new
prototype MHT specifically suited to space surveillance in conjunction with the aforementioned techniques
on uncertainty management.

2 Personnel Supported

a. PI: Aubrey B. Poore

b. Colleagues at Numerica: Joshua T. Horwood, Nathan D. Aragon, and Scott Danford

3 Publications

Journal papers submitted for publication under this effort are cited as References [5, 17] in the bibliography.
Conference proceedings papers produced under this effort are cited as References [15, 16, 18, 19] in the
bibliography.

4 Participation / Presentations at Meetings, Conferences, Seminars, etc.

1. SPIE Defense, Security, and Sensing 2010: Signal and Data Processing of Small Targets. Orlando,
FL. Apr. 5–9, 2010. Presented paper [15].

2. George H. Born Symposium. Boulder, CO. May 13-14, 2010.

3. Kyle T. Alfriend Astrodynamics Symposium. Monterey, CA. May 17–19, 2010. Presented paper [18].
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4. Advanced Maui Optical and Space Surveillance Technologies Conference 2010. Wailea, HI. Sept. 15–
17, 2010. Presented paper [19].

5. DARPA UCT meeting. Washington, DC. Nov. 17, 2010.

6. 21st AAS/AIAA Space Flight Mechanics Meeting. New Orleans, LA. Feb. 14–17, 2011. Presented
paper [16].

5 New Discoveries, Inventions, or Patents

No patents resulted from this effort.
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